LEHRSTUHL A
FÜR MATHEMATIK

Analysis und Zahlentheorie
RWTH Aachen

[an error occurred while processing this directive]
-   English version

Prof. Dr. Rudolf Stens


Publikationen (Auswahl)

  1. P.L. Butzer and R.L. Stens:
    Reconstruction of signals in Lp(R)-space by generalized sampling series based on linear combinations of B-splines.
    Integral Transforms Spec. Funct. 19 (2008), no. 1-2, 35-58.
     
  2. C. Bardaro, P.L. Butzer, R.L. Stens, and G. Vinti:
    Kantorovich-type generalized sampling series in the setting of Orlicz spaces.
    Sampl. Theory Signal Image Process. 6 (2007), no. 1, 29-52.
     
  3. C. Bardaro, P.L. Butzer, R.L. Stens, and G. Vinti:
    Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals.
    J. Math. Anal. Appl. 316 (2006), no. 1, 269-306.
     
  4. P.L. Butzer, J.R. Higgins, and R.L. Stens:
    Classical and approximate sampling theorems: studies in the Lp(R) and the uniform norm.
    J. Approx. Theory 137 (2005), no. 2, 250-263.
     
  5. P.L. Butzer and R.L. Stens:
    De la Vallèe Poussin's paper of 1908 on interpolation and sampling theory, and its influence
    In: Charles Baron de la Vallèe Poussin, Collected Works (P.L. Butzer, J. Mawhin, and P. Vetro, eds.), vol. III, Palermo 2004, pp. 421-453.
     
  6. C. Bardaro, P.L. Butzer, R.L. Stens and G. Vinti:
    Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals.
    Analysis (Munich) 23 (2003), no. 4, 299-340.
     
  7. B. Ohligs and R.L. Stens:
    Sampling and quasi-sampling in rotation invariant Paley-Wiener spaces.
    In: Trends in Industrial and Applied Mathematics, Proc. Conf., Amritsar, India, 2001 (A.H. Siddiqi and M. Kočvara, eds.), Appl. Optim., 72, Kluwer Acad. Publ., Dordrecht, 2002, pp.??? 77-91.
     
  8. P.L. Butzer, G. Schmeisser, and R.L. Stens:
    An introduction to sampling analysis
    In: Nonuniform Sampling, Theory and Practice (F. Marvasti, ed.), Kluwer Academic/Plenum Publishers, New York, 2001, 17-121.

  9. P.L. Butzer, J.R. Higgins, and R.L. Stens:
    Sampling theory of signal theory
    In: Development of Mathematics 1950--2000 (J.-P. Pier, ed.), Birkhäuser Verlag, Basel, 2000, 193-234.
     
  10. U. Hettich and R.L. Stens:
    Approximating a bandlimited function in terms of its samples
    Comput. Math. Appl. 40 (2000), 107-116.
     
  11. R.L. Stens:
    Sampling with generalized kernels
    In: Sampling Theory in Fourier and Signal Analysis: Advanced Topics (J.R. Higgins and R.L. Stens, eds.), Clarendon Press, Oxford, 1999, pp. ?????.
     
  12. E. Görlich, A. Krieg, R.J. Nessel, and R.L. Stens:
    Paul L. Butzer - five years as Professor emeritus
    Results Math. 34 (1998), no. 1-2, 20-31.
     
  13. P.L. Butzer and R.L. Stens:
    An extension of Kramer's sampling theorem for not necessarily "bandlimited" signals - the aliasing error
    Acta Sci. Math. (Szeged) 60 (1995), no. 1-2, 59-69.
     
  14. P.L. Butzer, A. Fischer, and R.L. Stens:
    Generalized sampling approximation of multivariate signals; general theory
    Atti Sem. Mat. Fis. Univ. Modena 41 (1993), no. 1, 17-37.
     
  15. P.L. Butzer and R.L. Stens:
    Linear prediction by samples from the past
    In: Advanced Topics in Shannon Sampling and Interpolation Theory (R.J. Marks II, ed.), Springer-Verlag, New York, 1993, pp. 157-183.
     
  16. P.L. Butzer and R.L. Stens:
    Sampling theory for not necessarily band-limited functions; a historical overview
    SIAM Rev. 34 (1992), no. 1, 40-53.
     
  17. S. Jansche and R.L. Stens:
    Best weighted polynomial approximation on the real line; a functional analytic approach
    J. Comput. Appl. Math. 40 (1992), no. 2, 199-213.
     
  18. P.L. Butzer, S. Jansche, and R.L.Stens:
    Functional analytic methods in the solution of the fundamental theorems on best-weighted algebraic approximation
    In: Approximation Theory, Proc. Conf., Memphis, TN, USA, 1991 (G.A. Anastassiou, ed.), Lecture Notes in Pure and Applied Mathematics, vol. 138, Dekker, New York, 1992, pp. 151-205.
     
  19. P.L. Butzer, W. Splettstößer, and R.L. Stens:
    The sampling theorem and linear prediction in signal analysis
    Jahresber. Deutsch. Math.-Verein. 90 (1988), 1-70.
     
  20. P.L. Butzer, W. Engels, S. Ries, and R.L. Stens:
    The Shannon sampling series and the reconstruction of signals in terms of linear, quadratic and cubic splines
    SIAM J. Appl. Math. 46 (1986), no. 2, 299-323.
     
  21. P.L. Butzer and R.L. Stens:
    A modification of the Whittaker-Kotelnikov-Shannon sampling series
    Aequationes Math. 28 (1985), 305-311.
     
  22. P.L. Butzer, S. Ries, and R.L. Stens:
    Shannon's sampling theorem, Cauchy's integral formula, and related results
    In: Anniversary Volume on Approximation Theory and Functional Analysis, Proc. Conf., Oberwolfach, Germany, 1983 (P.L. Butzer, R.L. Stens, and B. Sz-Nagy, eds.), ISNM, vol. 65, Birkhäuser Verlag, Basel, 1984, pp. 363-377.

Bücher:

  1. J.R. Higgins and R.L. Stens (eds.):
    Sampling Theory in Fourier and Signal Analysis: Advanced Topics
    Clarendon Press, Oxford, 1999

  2. P.L. Butzer, R.L. Stens, and B. Sz-Nagy (eds.):
    Anniversary Volume on Approximation Theory and Functional Analysis
    Proc. Conf., Oberwolfach, Germany, 1983
    ISNM, vol. 65, Birkhäuser Verlag, Basel, 1984


Zurück zur Hauptseite von Prof. Stens
Valid XHTML 1.0!Haftungsausschluss
Letzte Änderung: 01.02.2007, Webmaster